Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474305

RESUMO

Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Animais , Humanos , Camundongos , Azoximetano/efeitos adversos , Carcinogênese , Transformação Celular Neoplásica , Colite/patologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fuso Acromático/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Exp Anim ; 72(4): 520-525, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344407

RESUMO

Adriamycin (ADR) nephropathy is the most widely used nephropathy model to study the pathophysiological mechanisms of chronic kidney disease (CKD) in mice. However, its application is limited to a few mouse strains such as the BALB/c strain; the standard strain, C57BL/6J (B6J), does not develop ADR nephropathy. Nevertheless, Arif et al. reported that C57BL/6N (B6N), another standard strain, is ADR-susceptible. Since then, no follow-up reports or other studies have been published on ADR nephropathy in B6N mice. Therefore, the goal of this study was to determine whether B6N mice are indeed susceptible to ADR nephropathy and whether there are differences in ADR susceptibility among the substrains of C57BL/6NCrl (NCrl) and C57BL/6NJcl (NJcl). NCrl mice showed marked albuminuria and mesangial cell proliferation, which are associated with mild ADR nephropathy, confirming that NCrl mice were susceptible to ADR nephropathy. On the other hand, NJcl mice did not exhibit these symptoms. ADR nephropathy models are usually generated by administering ADR through the tail vein, but Arif et al. administered ADR through the orbital vein. Therefore, we investigated the effect of the route of administration on ADR nephropathy. The degree of ADR nephropathy was found to vary based on the route of administration: more severe nephropathy was observed upon administration through the tail vein than through the orbital vein. Therefore, we conclude that NCrl mice are susceptible to ADR nephropathy, and the severity of ADR-induced nephropathy through orbital vein administration is relatively lower than that through the tail vein.


Assuntos
Doxorrubicina , Nefropatias , Camundongos , Animais , Doxorrubicina/efeitos adversos , Camundongos Endogâmicos C57BL , Nefropatias/induzido quimicamente , Albuminúria/induzido quimicamente
3.
J Vet Med Sci ; 85(7): 702-704, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245991

RESUMO

Adriamycin (ADR) is an effective chemotherapy drug for various cancers but has serious side effects. ADR-induced liver damage is a common problem during therapy, but the underlying mechanism remains to be fully understood. In contrast, ADR-induced glomerular damage is well studied in rodents, and sensitivity to ADR-induced nephropathy is because of the R2140C polymorphism of Prkdc gene. To investigate whether strain differences or sensitivity to ADR-induced liver damage are related to Prkdc polymorphism, this study compared the sensitivity to ADR-induced liver damage among C57BL/6J (B6J), B6-PrkdcR2140C, and BALB/c mice. Although B6J exhibits resistance to ADR-induced liver injury, BALB/c and B6-PrkdcR2140C are more susceptible to liver injury, which is exacerbated by the presence of R2140C mutation in PRKDC.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nefropatias , Animais , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Doxorrubicina/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/veterinária , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo Genético
4.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108118

RESUMO

Most mitochondrial diseases are hereditary and highly heterogeneous. Cattle born with the V79L mutation in the isoleucyl-tRNA synthetase 1 (IARS1) protein exhibit weak calf syndrome. Recent human genomic studies about pediatric mitochondrial diseases also identified mutations in the IARS1 gene. Although severe prenatal-onset growth retardation and infantile hepatopathy have been reported in such patients, the relationship between IARS mutations and the symptoms is unknown. In this study, we generated hypomorphic IARS1V79L mutant mice to develop an animal model of IARS mutation-related disorders. We found that compared to wild-type mice, IARSV79L mutant mice showed a significant increase in hepatic triglyceride and serum ornithine carbamoyltransferase levels, indicating that IARS1V79L mice suffer from mitochondrial hepatopathy. In addition, siRNA knockdown of the IARS1 gene decreased mitochondrial membrane potential and increased reactive oxygen species in the hepatocarcinoma-derived cell line HepG2. Furthermore, proteomic analysis revealed decreased levels of the mitochondrial function-associated protein NME4 (mitochondrial nucleoside diphosphate kinase). Concisely, our mutant mice model can be used to study IARS mutation-related disorders.


Assuntos
Hepatopatias , Doenças Mitocondriais , Gravidez , Feminino , Humanos , Criança , Animais , Bovinos , Camundongos , Proteômica , Isoleucina-tRNA Ligase/genética , Genoma , Hepatopatias/genética , Doenças Mitocondriais/genética , Mutação
5.
J Vet Med Sci ; 85(2): 167-174, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596561

RESUMO

Inflammatory bowel disease (IBD) is classified into two types: Crohn's disease and ulcerative colitis. In IBD, the imbalance between the pro-inflammatory and anti-inflammatory cytokines prevents recovery from the inflammatory state, resulting in chronic inflammation in the colon. The mitotic spindle positioning protein (MISP) is localized to the apical membrane in the colon. In this study, we observed increased expression of MISP in the intestinal epithelial cells in dextran sulfate sodium (DSS)-induced colitis in mice. MISP-deficient mice receiving DSS showed significant exacerbation of colitis (e.g., weight loss, loss of the crypts). The intestinal epithelial cells of the MISP-deficient mice showed a trend towards decreased cell proliferation after DSS treatment. Reverse transcription followed by quantitative polymerase chain reaction revealed that the expression levels of Tgfb1, an anti-inflammatory cytokine, were significantly reduced in the colon of MISP-deficient mice compared with the wild-type mice regardless of DSS treatment. These findings indicate that MISP may play a role in the recovery of the colon after inflammation through its anti-inflammatory and proliferative activities, suggesting that MISP may be a new therapeutic target for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/veterinária , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/veterinária , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/veterinária , Camundongos Endogâmicos C57BL , Fuso Acromático/metabolismo
6.
Exp Anim ; 72(1): 47-54, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36058845

RESUMO

Animal models of podocytopathy and chronic kidney diseases (CKD) help elucidate these pathologies. Adriamycin (ADR)-induced nephropathy is a common rodent model of podocytopathy. BALB/c mice are sensitive to ADR, whereas C57BL/6 (B6) mice, the most commonly used strain, are resistant to ADR. Therefore, mouse strains with the B6 genetic background cannot be used as an ADR nephropathy model. We previously generated DNA-dependent protein kinase catalytic subunit (Prkdc) mutant B6 mice (B6-PrkdcR2140C) carrying the R2140C mutation that causes ADR nephropathy. However, whether ADR nephropathy in the novel strain progresses to CKD after ADR administration has not been evaluated. Therefore, we examined whether the B6-PrkdcR2140C mice develop CKD after ADR administration. We also evaluated whether differences existed in the genetic background in ADR nephropathy by comparing the B6-PrkdcR2140C mice with BALB/c mice. Our findings demonstrated that B6-PrkdcR2140C progresses to CKD and is resistant to nephropathy compared with the BALB/c mice. The B6-PrkdcR2140C and BALB/c mice differed in the expression of genes related to inflammatory mediators, and further analysis is required to identify factors that contribute to resistance to nephropathy.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Camundongos , Animais , Doxorrubicina/efeitos adversos , Camundongos Endogâmicos C57BL , Nefropatias/genética , Camundongos Endogâmicos BALB C
7.
Urolithiasis ; 50(6): 679-684, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35988091

RESUMO

Cystinuria is an autosomal metabolic disorder caused by mutations in the SLC3A1 and SLC7A9 genes, encoding the amino acid transporter proteins rBAT and b0,+AT, respectively. Based on the causative gene, cystinuria is classified into 3 types: type A (SLC3A1), type B (SLC7A9), and type AB (SLC3A1 and SLC7A9). Patients with cystinuria exhibit hyperexcretion of cystine and dibasic amino acids in the urine and develop cystine crystals due to its low solubility in the urine, often resulting in calculus formation. In this study, we present an inbred strain FVB/NJcl mice affected with cystinuria. In the affected mouse kidney, Slc7a9 expression was completely abolished because of a large sequence deletion in the promoter region of the Slc7a9 mutant allele. Slc7a9-deficient mice with FVB/NJcl genetic background developed cystine calculi in the bladder with high penetrance, as compared to the previously reported mouse models of cystinuria. This model may be useful to understand the determinants of crystal aggregation, affecting calculus formation.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Diamino Aminoácidos , Cálculos , Cistinúria , Camundongos , Animais , Cistinúria/genética , Cistinúria/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Cistina/metabolismo , Mutação , Modelos Animais de Doenças , Diamino Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética
8.
Biochem Biophys Res Commun ; 556: 121-126, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839407

RESUMO

Adriamycin (ADR)-induced nephropathy is frequently utilized in rodent models of podocytopathy. However, the application of this model in mice is limited to a few strains, such as BALB/c mice. The most commonly used mouse strain, C57BL/6 (B6), is resistant to ADR-induced nephropathy, as are all mouse strains with a B6 genetic background. Reportedly, the R2140C variant of the Prkdc gene is the cause of susceptibility to ADR-induced nephropathy in mice. To verify this hypothesis, we produced Prkdc mutant B6 mice, termed B6-PrkdcR2140C, that possess the R2140C mutation. After administration of ADR, B6-PrkdcR2140C mice exhibited massive proteinuria and glomerular and renal tubular injuries. In addition, there was no significant difference in the severity between B6-PrkdcR2140C and BALB/c. These findings demonstrated that B6-PrkdcR2140C show ADR-induced nephropathy susceptibility at a similar level to BALB/c, and that the PRKDC R2140C variant causes susceptibility to ADR-induced nephropathy. In future studies, ADR-induced nephropathy may become applicable to various kinds of genetically modified mice with a B6 background by mating with B6-PrkdcR2140C.


Assuntos
Substituição de Aminoácidos , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Nefropatias/induzido quimicamente , Albuminúria/induzido quimicamente , Albuminúria/complicações , Animais , Sequência de Bases , Biomarcadores , Sistemas CRISPR-Cas , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Nefropatias/complicações , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/complicações , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia
9.
Biochem Biophys Res Commun ; 551: 127-132, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33725574

RESUMO

Mast cell-deficient mice are helpful for understanding the roles of mast cells in vivo. To date, a dozen mouse models for mast cell deficiency have been reported. However, mice with a specific depletion of all populations of mast cells have not been reported. We generated knock-in mice, termed Mcpt5/Cma1DTR mice, expressing human diphtheria toxin A (DT) receptor under the endogenous promoter of Mcpt5 (also known as Cma1), which encodes mouse mast cell protease-5. Flow cytometry and histological analysis showed that intraperitoneal injection of DT induced almost complete depletion of mast cells in heterozygote Mcpt5/Cma1DTR/+ mice. The deletion rates of mast cells in peritoneal cavity, mesentery, abdominal skin, ear skin, and glandular stomach were 99.9%, 100%, 98.7%, 97.7%, and 100%, respectively. Passive cutaneous anaphylaxis reaction also revealed mast cell deficiency in ear skin after DT treatment. Other than mast cells, a small percentage of marginal zone B cells in Mcpt5/Cma1DTR/+ mice were killed by DT treatment. In conclusion, the Mcpt5/Cma1DTR/+ mouse model is valuable for achieving conditional depletion of all populations of mast cells without inducing a marked reduction in other cells.


Assuntos
Separação Celular/métodos , Quimases/genética , Mastócitos/citologia , Modelos Animais , Animais , Células do Tecido Conjuntivo/citologia , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Mucosa/citologia , Regiões Promotoras Genéticas/genética
10.
J Vet Med Sci ; 83(3): 397-402, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431722

RESUMO

The number of patients with chronic kidney disease (CKD) is growing continuously globally. In order to study pathogenesis and mechanisms, many animal models have been developed, including spontaneous, genetic, and induced models. Although each type of CKD shows disease-specific tissue changes in the early stages, tubular disorder and interstitial fibrosis histologically occur in the course of progression to end-stage renal failure. Therefore, the quantification of tubular disorder and interstitial fibrosis in CKD research using animal models is essential for measuring the degree of CKD severity and, thus, efficacy of therapeutic agents. Several strategies have been used to quantify interstitial fibrosis. Among scoring factors, renal tubular flattening can be quantitatively evaluated easily and inexpensively. However, the diagnostic value of renal tubular flattening evaluation has not been investigated previously. Therefore, in this study, we investigated the correlation between renal tubular flattening and interstitial fibrosis or renal tubular injury markers. We observed a strong correlation between the degree of tubular injury/interstitial fibrosis and renal tubular flattening in three types of mouse renal disease model. This is advantageous because rapidly advancing technologies such as artificial intelligence and image processing can be easily applied; hence, a more precise, objective, and quantitative diagnosis should be possible in the future.


Assuntos
Insuficiência Renal Crônica , Doenças dos Roedores , Animais , Inteligência Artificial , Modelos Animais de Doenças , Fibrose , Rim/patologia , Túbulos Renais/patologia , Camundongos , Insuficiência Renal Crônica/veterinária , Doenças dos Roedores/patologia
11.
PLoS One ; 15(6): e0234132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502168

RESUMO

Diabetic animal models have made significant contributions to understanding the etiology of diabetes and to the development of new medications. Our research group recently developed a novel diabetic mouse strain, the insulin hyposecretion (ihs)mouse. The strain involves neither obesity nor insulitis but exhibits notable pancreatic ß-cell dysfunction, distinguishing it from other well-characterized animal models. In ihs mice, severe impairment of insulin secretion from pancreas has been elicited by glucose or potassium chloride stimulation. To clarify the genetic basis of impaired insulin secretion, beginning with identifying the causative gene, genetic linkage analysis was performed using [(C57BL/6 × ihs) F1 × ihs] backcross progeny. Genetic linkage analysis and quantitative trait loci analysis for blood glucose after oral glucose loading indicated that a recessively acting locus responsible for impaired glucose tolerance was mapped to a 14.9-Mb region of chromosome 18 between D18Mit233 and D18Mit235 (the ihs locus). To confirm the gene responsible for the ihs locus, a congenic strain harboring the ihs locus on the C57BL/6 genetic background was developed. Phenotypic analysis of B6.ihs-(D18Mit233-D18Mit235) mice showed significant glucose tolerance impairment and markedly lower plasma insulin levels during an oral glucose tolerance test. Whole-genome sequencing and Sanger sequencing analyses on the ihs genome detected two ihs-specific variants changing amino acids within the ihs locus; both variants in Slc25a46 and Tcerg1 were predicted to disrupt the protein function. Based on information regarding gene functions involving diabetes mellitus and insulin secretion, reverse-transcription quantitative polymerase chain reaction analysis revealed that the relative abundance of Reep2 and Sil1 transcripts from ihs islets was significantly decreased whereas that of Syt4 transcripts were significantly increased compared with those of control C57BL/6 mice. Thus, Slc25a46, Tcerg1, Syt4, Reep2 and Sil1 are potential candidate genes for the ihs locus. This will be the focus of future studies in both mice and humans.


Assuntos
Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Animais , Glicemia/análise , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Ligação Genética , Teste de Tolerância a Glucose , Secreção de Insulina , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
12.
Exp Anim ; 69(2): 135-143, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31723089

RESUMO

Tensin2 (TNS2) is a focal adhesion-localized protein possessing N-terminal tandem protein tyrosine phosphatase (PTPase) and C2 domains, and C-terminal tandem Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains. Genetic deletion of Tns2 in a susceptible murine strain leads to podocyte alterations after birth. To clarify the domain contributions to podocyte maintenance, we generated two Tns2-mutant mice with the genetic background of the susceptible FVB/NJ strain, Tns2∆C and Tns2CS mice, carrying a SH2-PTB domain deletion and a PTPase domain inactivation, respectively. The Tns2∆C mice developed massive albuminuria, severe glomerular injury and podocyte alterations similarly to those in Tns2-deficient mice. In contrast, the Tns2CS mice showed no obvious phenotypic abnormalities. These results indicate that the TNS2 SH2-PTB domain, but not its PTPase activity, plays a role in podocyte maintenance. Furthermore, in a podocyte cell line, the truncated TNS2 mutant lacking the SH2-PTB domain lost the ability to localize to focal adhesion. Taken together, these data suggest that TNS2 recruitment to focal adhesion is required to maintain postnatal podocytes on a susceptible genetic background.


Assuntos
Deleção de Genes , Podócitos/patologia , Proteínas Tirosina Fosfatases/metabolismo , Tensinas/genética , Animais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...